|
有人問說: 新聞中的沃牛一號是如何辦到絕對獲利的?是短期現象(AI根據短時間(3年)的資料在短時間內沒遇到黑天鵝)還是自吹自擂的可能性比較大?
我的回答是: 請注意它的用詞是: [回測]的數據令人震驚; 我也常開發出回測令人震驚的策略, 實際上線使用後也真的令我震驚, 賠錢到趕忙讓程式下架. 絕對獲利就只是不賠另種說法而已, 要做到沒很難, 我每週公開的實單測試便屬於這種, 但要承受獲利低的缺點, 大多數情況都是trade-off, 很難兩者兼得的, 如果可以, 這種大發現會得諾貝爾獎 --- Harry Markowitz的論文得獎(同時獲利最大化+風險最小化)
關於人工智慧, 您可以把機器想像成很小的小孩, 看您要怎樣教育他, 每個人教育小孩的方法都不同. 這就是我說準備訓練資料時的domain expert最重要, 不是只有我們這種data scientist是關鍵. 根據完全同樣一份市場的報價歷史資料, 您可以將訓練資料準備成好幾種, 一種是讓機器去學遇到哪幾種狀況同時存在時去做交易的; 另一種是讓機器去學後面的人心計算是怎麼運作, 然後據此再去交易的, 而其他種則看domain expert的創意. 像小孩學課程一樣, 教材不同, 學出來的孩子技能也都不同. 當然教材笨笨的, 學出來的小孩也是笨笨的, 教材裡面沒涵蓋的(ex: 黑天鵝), 被教育出來的小孩要知道也難. 所以才強調AI的重點不在後面的技術, 反在於訓練資料的準備
|
|